Metamath Proof Explorer


Theorem reldmlmhm

Description: Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion reldmlmhm Rel dom LMHom

Proof

Step Hyp Ref Expression
1 df-lmhm LMHom = s LMod , t LMod f s GrpHom t | [˙ Scalar s / w]˙ Scalar t = w x Base w y Base s f x s y = x t f y
2 1 reldmmpo Rel dom LMHom