Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Homomorphisms and isomorphisms of left modules
reldmlmhm
Next ⟩
lmimfn
Metamath Proof Explorer
Ascii
Unicode
Theorem
reldmlmhm
Description:
Lemma for module homomorphisms.
(Contributed by
Stefan O'Rear
, 31-Dec-2014)
Ref
Expression
Assertion
reldmlmhm
⊢
Rel
⁡
dom
⁡
LMHom
Proof
Step
Hyp
Ref
Expression
1
df-lmhm
⊢
LMHom
=
s
∈
LMod
,
t
∈
LMod
⟼
f
∈
s
GrpHom
t
|
[
˙
Scalar
⁡
s
/
w
]
˙
Scalar
⁡
t
=
w
∧
∀
x
∈
Base
w
∀
y
∈
Base
s
f
⁡
x
⋅
s
y
=
x
⋅
t
f
⁡
y
2
1
reldmmpo
⊢
Rel
⁡
dom
⁡
LMHom