Metamath Proof Explorer


Theorem reldmmpo

Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis rngop.1 F = x A , y B C
Assertion reldmmpo Rel dom F

Proof

Step Hyp Ref Expression
1 rngop.1 F = x A , y B C
2 reldmoprab Rel dom x y z | x A y B z = C
3 df-mpo x A , y B C = x y z | x A y B z = C
4 1 3 eqtri F = x y z | x A y B z = C
5 4 dmeqi dom F = dom x y z | x A y B z = C
6 5 releqi Rel dom F Rel dom x y z | x A y B z = C
7 2 6 mpbir Rel dom F