Metamath Proof Explorer


Theorem reldmopsr

Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015)

Ref Expression
Assertion reldmopsr Rel dom ordPwSer

Proof

Step Hyp Ref Expression
1 df-opsr ordPwSer = i V , s V r 𝒫 i × i i mPwSer s / p p sSet ndx x y | x y Base p [˙ h 0 i | h -1 Fin / d]˙ z d x z < s y z w d w r < bag i z x w = y w x = y
2 1 reldmmpo Rel dom ordPwSer