Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
reldmopsr
Next ⟩
opsrval
Metamath Proof Explorer
Ascii
Unicode
Theorem
reldmopsr
Description:
Lemma for ordered power series.
(Contributed by
Stefan O'Rear
, 2-Oct-2015)
Ref
Expression
Assertion
reldmopsr
⊢
Rel
⁡
dom
⁡
ordPwSer
Proof
Step
Hyp
Ref
Expression
1
df-opsr
⊢
ordPwSer
=
i
∈
V
,
s
∈
V
⟼
r
∈
𝒫
i
×
i
⟼
⦋
i
mPwSer
s
/
p
⦌
p
sSet
≤
ndx
x
y
|
x
y
⊆
Base
p
∧
[
˙
h
∈
ℕ
0
i
|
h
-1
ℕ
∈
Fin
/
d
]
˙
∃
z
∈
d
x
⁡
z
<
s
y
⁡
z
∧
∀
w
∈
d
w
r
<
bag
i
z
→
x
⁡
w
=
y
⁡
w
∨
x
=
y
2
1
reldmmpo
⊢
Rel
⁡
dom
⁡
ordPwSer