Metamath Proof Explorer


Theorem reldmprds

Description: The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015) (Revised by Thierry Arnoux, 15-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Assertion reldmprds Rel dom 𝑠

Proof

Step Hyp Ref Expression
1 df-prds 𝑠 = s V , r V x dom r Base r x / v f v , g v x dom r f x Hom r x g x / h Base ndx v + ndx f v , g v x dom r f x + r x g x ndx f v , g v x dom r f x r x g x Scalar ndx s ndx f Base s , g v x dom r f r x g x 𝑖 ndx f v , g v s x dom r f x 𝑖 r x g x TopSet ndx 𝑡 TopOpen r ndx f g | f g v x dom r f x r x g x dist ndx f v , g v sup ran x dom r f x dist r x g x 0 * < Hom ndx h comp ndx a v × v , c v d 2 nd a h c , e h a x dom r d x 1 st a x 2 nd a x comp r x c x e x
2 1 reldmmpo Rel dom 𝑠