Metamath Proof Explorer


Theorem reldmpsr

Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion reldmpsr Rel dom mPwSer

Proof

Step Hyp Ref Expression
1 df-psr mPwSer = i V , r V h 0 i | h -1 Fin / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r
2 1 reldmmpo Rel dom mPwSer