| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  | 
						
							| 2 | 1 | eldm |  | 
						
							| 3 |  | brtpos0 |  | 
						
							| 4 | 3 | elv |  | 
						
							| 5 |  | 0nelrel0 |  | 
						
							| 6 |  | vex |  | 
						
							| 7 | 1 6 | breldm |  | 
						
							| 8 | 5 7 | nsyl3 |  | 
						
							| 9 | 4 8 | sylbir |  | 
						
							| 10 | 9 | exlimiv |  | 
						
							| 11 | 2 10 | sylbi |  | 
						
							| 12 | 11 | con2i |  | 
						
							| 13 |  | vex |  | 
						
							| 14 | 13 | eldm |  | 
						
							| 15 |  | relcnv |  | 
						
							| 16 |  | df-rel |  | 
						
							| 17 | 15 16 | mpbi |  | 
						
							| 18 | 17 | sseli |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 |  | elsni |  | 
						
							| 21 | 20 | breq1d |  | 
						
							| 22 | 1 6 | breldm |  | 
						
							| 23 | 22 | pm2.24d |  | 
						
							| 24 | 4 23 | sylbi |  | 
						
							| 25 | 21 24 | biimtrdi |  | 
						
							| 26 | 25 | com3l |  | 
						
							| 27 | 26 | impcom |  | 
						
							| 28 |  | brtpos2 |  | 
						
							| 29 | 6 28 | ax-mp |  | 
						
							| 30 | 29 | simplbi |  | 
						
							| 31 |  | elun |  | 
						
							| 32 | 30 31 | sylib |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 | 19 27 33 | mpjaod |  | 
						
							| 35 | 34 | ex |  | 
						
							| 36 | 35 | exlimdv |  | 
						
							| 37 | 14 36 | biimtrid |  | 
						
							| 38 | 37 | ssrdv |  | 
						
							| 39 |  | df-rel |  | 
						
							| 40 | 38 39 | sylibr |  | 
						
							| 41 | 12 40 | impbii |  |