Metamath Proof Explorer


Theorem reldv

Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion reldv Rel F S

Proof

Step Hyp Ref Expression
1 relxp Rel x × z dom f x f z f x z x lim x
2 1 rgenw x int TopOpen fld 𝑡 s dom f Rel x × z dom f x f z f x z x lim x
3 reliun Rel x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x x int TopOpen fld 𝑡 s dom f Rel x × z dom f x f z f x z x lim x
4 2 3 mpbir Rel x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x
5 df-rel Rel x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x V × V
6 4 5 mpbi x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x V × V
7 6 rgenw f 𝑝𝑚 s x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x V × V
8 7 rgenw s 𝒫 f 𝑝𝑚 s x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x V × V
9 df-dv D = s 𝒫 , f 𝑝𝑚 s x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x
10 9 ovmptss s 𝒫 f 𝑝𝑚 s x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x V × V S D F V × V
11 8 10 ax-mp S D F V × V
12 df-rel Rel F S S D F V × V
13 11 12 mpbir Rel F S