Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
reldvdsr
Next ⟩
dvdsrval
Metamath Proof Explorer
Ascii
Unicode
Theorem
reldvdsr
Description:
The divides relation is a relation.
(Contributed by
Mario Carneiro
, 1-Dec-2014)
Ref
Expression
Hypothesis
reldvdsr.1
⊢
∥
˙
=
∥
r
⁡
R
Assertion
reldvdsr
⊢
Rel
⁡
∥
˙
Proof
Step
Hyp
Ref
Expression
1
reldvdsr.1
⊢
∥
˙
=
∥
r
⁡
R
2
df-dvdsr
⊢
∥
r
=
w
∈
V
⟼
x
y
|
x
∈
Base
w
∧
∃
z
∈
Base
w
z
⋅
w
x
=
y
3
2
relmptopab
⊢
Rel
⁡
∥
r
⁡
R
4
1
releqi
⊢
Rel
⁡
∥
˙
↔
Rel
⁡
∥
r
⁡
R
5
3
4
mpbir
⊢
Rel
⁡
∥
˙