Metamath Proof Explorer


Theorem reldvdsr

Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypothesis reldvdsr.1 ˙ = r R
Assertion reldvdsr Rel ˙

Proof

Step Hyp Ref Expression
1 reldvdsr.1 ˙ = r R
2 df-dvdsr r = w V x y | x Base w z Base w z w x = y
3 2 relmptopab Rel r R
4 1 releqi Rel ˙ Rel r R
5 3 4 mpbir Rel ˙