Metamath Proof Explorer


Theorem releabs

Description: The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of Gleason p. 133. (Contributed by NM, 1-Apr-2005)

Ref Expression
Assertion releabs AAA

Proof

Step Hyp Ref Expression
1 recl AA
2 1 recnd AA
3 abscl AA
4 2 3 syl AA
5 abscl AA
6 leabs AAA
7 1 6 syl AAA
8 absrele AAA
9 1 4 5 7 8 letrd AAA