Metamath Proof Explorer


Theorem releldmb

Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015)

Ref Expression
Assertion releldmb Rel R A dom R x A R x

Proof

Step Hyp Ref Expression
1 eldmg A dom R A dom R x A R x
2 1 ibi A dom R x A R x
3 releldm Rel R A R x A dom R
4 3 ex Rel R A R x A dom R
5 4 exlimdv Rel R x A R x A dom R
6 2 5 impbid2 Rel R A dom R x A R x