Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
releldmb
Next ⟩
relelrnb
Metamath Proof Explorer
Ascii
Unicode
Theorem
releldmb
Description:
Membership in a domain.
(Contributed by
Mario Carneiro
, 5-Nov-2015)
Ref
Expression
Assertion
releldmb
⊢
Rel
⁡
R
→
A
∈
dom
⁡
R
↔
∃
x
A
R
x
Proof
Step
Hyp
Ref
Expression
1
eldmg
⊢
A
∈
dom
⁡
R
→
A
∈
dom
⁡
R
↔
∃
x
A
R
x
2
1
ibi
⊢
A
∈
dom
⁡
R
→
∃
x
A
R
x
3
releldm
⊢
Rel
⁡
R
∧
A
R
x
→
A
∈
dom
⁡
R
4
3
ex
⊢
Rel
⁡
R
→
A
R
x
→
A
∈
dom
⁡
R
5
4
exlimdv
⊢
Rel
⁡
R
→
∃
x
A
R
x
→
A
∈
dom
⁡
R
6
2
5
impbid2
⊢
Rel
⁡
R
→
A
∈
dom
⁡
R
↔
∃
x
A
R
x