Metamath Proof Explorer


Theorem relelec

Description: Membership in an equivalence class when R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion relelec Rel R A B R B R A

Proof

Step Hyp Ref Expression
1 elex A B R A V
2 ecexr A B R B V
3 1 2 jca A B R A V B V
4 3 adantl Rel R A B R A V B V
5 brrelex12 Rel R B R A B V A V
6 5 ancomd Rel R B R A A V B V
7 elecg A V B V A B R B R A
8 4 6 7 pm5.21nd Rel R A B R B R A