Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
releq
Next ⟩
releqi
Metamath Proof Explorer
Ascii
Unicode
Theorem
releq
Description:
Equality theorem for the relation predicate.
(Contributed by
NM
, 1-Aug-1994)
Ref
Expression
Assertion
releq
⊢
A
=
B
→
Rel
⁡
A
↔
Rel
⁡
B
Proof
Step
Hyp
Ref
Expression
1
sseq1
⊢
A
=
B
→
A
⊆
V
×
V
↔
B
⊆
V
×
V
2
df-rel
⊢
Rel
⁡
A
↔
A
⊆
V
×
V
3
df-rel
⊢
Rel
⁡
B
↔
B
⊆
V
×
V
4
1
2
3
3bitr4g
⊢
A
=
B
→
Rel
⁡
A
↔
Rel
⁡
B