Metamath Proof Explorer


Theorem releqg

Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypothesis releqg.r R = G ~ QG S
Assertion releqg Rel R

Proof

Step Hyp Ref Expression
1 releqg.r R = G ~ QG S
2 df-eqg ~ QG = g V , s V x y | x y Base g inv g g x + g y s
3 2 relmpoopab Rel G ~ QG S
4 1 releqi Rel R Rel G ~ QG S
5 3 4 mpbir Rel R