Metamath Proof Explorer


Theorem relexpaddnn

Description: Relation composition becomes addition under exponentiation. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpaddnn N M R V R r N R r M = R r N + M

Proof

Step Hyp Ref Expression
1 oveq2 n = 1 R r n = R r 1
2 1 coeq1d n = 1 R r n R r M = R r 1 R r M
3 oveq1 n = 1 n + M = 1 + M
4 3 oveq2d n = 1 R r n + M = R r 1 + M
5 2 4 eqeq12d n = 1 R r n R r M = R r n + M R r 1 R r M = R r 1 + M
6 5 imbi2d n = 1 M R V R r n R r M = R r n + M M R V R r 1 R r M = R r 1 + M
7 oveq2 n = k R r n = R r k
8 7 coeq1d n = k R r n R r M = R r k R r M
9 oveq1 n = k n + M = k + M
10 9 oveq2d n = k R r n + M = R r k + M
11 8 10 eqeq12d n = k R r n R r M = R r n + M R r k R r M = R r k + M
12 11 imbi2d n = k M R V R r n R r M = R r n + M M R V R r k R r M = R r k + M
13 oveq2 n = k + 1 R r n = R r k + 1
14 13 coeq1d n = k + 1 R r n R r M = R r k + 1 R r M
15 oveq1 n = k + 1 n + M = k + 1 + M
16 15 oveq2d n = k + 1 R r n + M = R r k + 1 + M
17 14 16 eqeq12d n = k + 1 R r n R r M = R r n + M R r k + 1 R r M = R r k + 1 + M
18 17 imbi2d n = k + 1 M R V R r n R r M = R r n + M M R V R r k + 1 R r M = R r k + 1 + M
19 oveq2 n = N R r n = R r N
20 19 coeq1d n = N R r n R r M = R r N R r M
21 oveq1 n = N n + M = N + M
22 21 oveq2d n = N R r n + M = R r N + M
23 20 22 eqeq12d n = N R r n R r M = R r n + M R r N R r M = R r N + M
24 23 imbi2d n = N M R V R r n R r M = R r n + M M R V R r N R r M = R r N + M
25 relexp1g R V R r 1 = R
26 25 adantl M R V R r 1 = R
27 26 coeq1d M R V R r 1 R r M = R R r M
28 relexpsucnnl R V M R r M + 1 = R R r M
29 28 ancoms M R V R r M + 1 = R R r M
30 simpl M R V M
31 30 nncnd M R V M
32 1cnd M R V 1
33 31 32 addcomd M R V M + 1 = 1 + M
34 33 oveq2d M R V R r M + 1 = R r 1 + M
35 27 29 34 3eqtr2d M R V R r 1 R r M = R r 1 + M
36 simp2r k M R V R r k R r M = R r k + M R V
37 simp1 k M R V R r k R r M = R r k + M k
38 relexpsucnnl R V k R r k + 1 = R R r k
39 36 37 38 syl2anc k M R V R r k R r M = R r k + M R r k + 1 = R R r k
40 39 coeq1d k M R V R r k R r M = R r k + M R r k + 1 R r M = R R r k R r M
41 coass R R r k R r M = R R r k R r M
42 40 41 syl6eq k M R V R r k R r M = R r k + M R r k + 1 R r M = R R r k R r M
43 simp3 k M R V R r k R r M = R r k + M R r k R r M = R r k + M
44 43 coeq2d k M R V R r k R r M = R r k + M R R r k R r M = R R r k + M
45 37 nncnd k M R V R r k R r M = R r k + M k
46 1cnd k M R V R r k R r M = R r k + M 1
47 31 3ad2ant2 k M R V R r k R r M = R r k + M M
48 45 46 47 add32d k M R V R r k R r M = R r k + M k + 1 + M = k + M + 1
49 48 oveq2d k M R V R r k R r M = R r k + M R r k + 1 + M = R r k + M + 1
50 30 3ad2ant2 k M R V R r k R r M = R r k + M M
51 37 50 nnaddcld k M R V R r k R r M = R r k + M k + M
52 relexpsucnnl R V k + M R r k + M + 1 = R R r k + M
53 36 51 52 syl2anc k M R V R r k R r M = R r k + M R r k + M + 1 = R R r k + M
54 49 53 eqtr2d k M R V R r k R r M = R r k + M R R r k + M = R r k + 1 + M
55 42 44 54 3eqtrd k M R V R r k R r M = R r k + M R r k + 1 R r M = R r k + 1 + M
56 55 3exp k M R V R r k R r M = R r k + M R r k + 1 R r M = R r k + 1 + M
57 56 a2d k M R V R r k R r M = R r k + M M R V R r k + 1 R r M = R r k + 1 + M
58 6 12 18 24 35 57 nnind N M R V R r N R r M = R r N + M
59 58 3impib N M R V R r N R r M = R r N + M