Metamath Proof Explorer


Theorem relfi

Description: A relation (set) is finite if and only if both its domain and range are finite. (Contributed by Thierry Arnoux, 27-Aug-2017)

Ref Expression
Assertion relfi Rel A A Fin dom A Fin ran A Fin

Proof

Step Hyp Ref Expression
1 dmfi A Fin dom A Fin
2 rnfi A Fin ran A Fin
3 1 2 jca A Fin dom A Fin ran A Fin
4 xpfi dom A Fin ran A Fin dom A × ran A Fin
5 relssdmrn Rel A A dom A × ran A
6 ssfi dom A × ran A Fin A dom A × ran A A Fin
7 4 5 6 syl2anr Rel A dom A Fin ran A Fin A Fin
8 7 ex Rel A dom A Fin ran A Fin A Fin
9 3 8 impbid2 Rel A A Fin dom A Fin ran A Fin