Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
relfld
Next ⟩
relresfld
Metamath Proof Explorer
Ascii
Unicode
Theorem
relfld
Description:
The double union of a relation is its field.
(Contributed by
NM
, 17-Sep-2006)
Ref
Expression
Assertion
relfld
⊢
Rel
⁡
R
→
⋃
⋃
R
=
dom
⁡
R
∪
ran
⁡
R
Proof
Step
Hyp
Ref
Expression
1
relssdmrn
⊢
Rel
⁡
R
→
R
⊆
dom
⁡
R
×
ran
⁡
R
2
uniss
⊢
R
⊆
dom
⁡
R
×
ran
⁡
R
→
⋃
R
⊆
⋃
dom
⁡
R
×
ran
⁡
R
3
uniss
⊢
⋃
R
⊆
⋃
dom
⁡
R
×
ran
⁡
R
→
⋃
⋃
R
⊆
⋃
⋃
dom
⁡
R
×
ran
⁡
R
4
1
2
3
3syl
⊢
Rel
⁡
R
→
⋃
⋃
R
⊆
⋃
⋃
dom
⁡
R
×
ran
⁡
R
5
unixpss
⊢
⋃
⋃
dom
⁡
R
×
ran
⁡
R
⊆
dom
⁡
R
∪
ran
⁡
R
6
4
5
sstrdi
⊢
Rel
⁡
R
→
⋃
⋃
R
⊆
dom
⁡
R
∪
ran
⁡
R
7
dmrnssfld
⊢
dom
⁡
R
∪
ran
⁡
R
⊆
⋃
⋃
R
8
7
a1i
⊢
Rel
⁡
R
→
dom
⁡
R
∪
ran
⁡
R
⊆
⋃
⋃
R
9
6
8
eqssd
⊢
Rel
⁡
R
→
⋃
⋃
R
=
dom
⁡
R
∪
ran
⁡
R