Metamath Proof Explorer


Theorem relfunc

Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion relfunc Rel D Func E

Proof

Step Hyp Ref Expression
1 df-func Func = t Cat , u Cat f g | [˙Base t / b]˙ f : b Base u g z b × b f 1 st z Hom u f 2 nd z Hom t z x b x g x Id t x = Id u f x y b z b m x Hom t y n y Hom t z x g z n x y comp t z m = y g z n f x f y comp u f z x g y m
2 1 relmpoopab Rel D Func E