Database
BASIC CATEGORY THEORY
Categories
Functors
relfunc
Next ⟩
funcrcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
relfunc
Description:
The set of functors is a relation.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Assertion
relfunc
⊢
Rel
⁡
D
Func
E
Proof
Step
Hyp
Ref
Expression
1
df-func
⊢
Func
=
t
∈
Cat
,
u
∈
Cat
⟼
f
g
|
[
˙
Base
t
/
b
]
˙
f
:
b
⟶
Base
u
∧
g
∈
⨉
z
∈
b
×
b
f
⁡
1
st
⁡
z
Hom
⁡
u
f
⁡
2
nd
⁡
z
Hom
⁡
t
⁡
z
∧
∀
x
∈
b
x
g
x
⁡
Id
⁡
t
⁡
x
=
Id
⁡
u
⁡
f
⁡
x
∧
∀
y
∈
b
∀
z
∈
b
∀
m
∈
x
Hom
⁡
t
y
∀
n
∈
y
Hom
⁡
t
z
x
g
z
⁡
n
x
y
comp
⁡
t
z
m
=
y
g
z
⁡
n
f
⁡
x
f
⁡
y
comp
⁡
u
f
⁡
z
x
g
y
⁡
m
2
1
relmpoopab
⊢
Rel
⁡
D
Func
E