Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
relimasn
Next ⟩
elrelimasn
Metamath Proof Explorer
Ascii
Unicode
Theorem
relimasn
Description:
The image of a singleton.
(Contributed by
NM
, 20-May-1998)
Ref
Expression
Assertion
relimasn
⊢
Rel
⁡
R
→
R
A
=
y
|
A
R
y
Proof
Step
Hyp
Ref
Expression
1
snprc
⊢
¬
A
∈
V
↔
A
=
∅
2
imaeq2
⊢
A
=
∅
→
R
A
=
R
∅
3
1
2
sylbi
⊢
¬
A
∈
V
→
R
A
=
R
∅
4
ima0
⊢
R
∅
=
∅
5
3
4
eqtrdi
⊢
¬
A
∈
V
→
R
A
=
∅
6
5
adantl
⊢
Rel
⁡
R
∧
¬
A
∈
V
→
R
A
=
∅
7
brrelex1
⊢
Rel
⁡
R
∧
A
R
y
→
A
∈
V
8
7
stoic1a
⊢
Rel
⁡
R
∧
¬
A
∈
V
→
¬
A
R
y
9
8
nexdv
⊢
Rel
⁡
R
∧
¬
A
∈
V
→
¬
∃
y
A
R
y
10
abn0
⊢
y
|
A
R
y
≠
∅
↔
∃
y
A
R
y
11
10
necon1bbii
⊢
¬
∃
y
A
R
y
↔
y
|
A
R
y
=
∅
12
9
11
sylib
⊢
Rel
⁡
R
∧
¬
A
∈
V
→
y
|
A
R
y
=
∅
13
6
12
eqtr4d
⊢
Rel
⁡
R
∧
¬
A
∈
V
→
R
A
=
y
|
A
R
y
14
13
ex
⊢
Rel
⁡
R
→
¬
A
∈
V
→
R
A
=
y
|
A
R
y
15
imasng
⊢
A
∈
V
→
R
A
=
y
|
A
R
y
16
14
15
pm2.61d2
⊢
Rel
⁡
R
→
R
A
=
y
|
A
R
y