Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
relin2
Next ⟩
relinxp
Metamath Proof Explorer
Ascii
Unicode
Theorem
relin2
Description:
The intersection with a relation is a relation.
(Contributed by
NM
, 17-Jan-2006)
Ref
Expression
Assertion
relin2
⊢
Rel
⁡
B
→
Rel
⁡
A
∩
B
Proof
Step
Hyp
Ref
Expression
1
inss2
⊢
A
∩
B
⊆
B
2
relss
⊢
A
∩
B
⊆
B
→
Rel
⁡
B
→
Rel
⁡
A
∩
B
3
1
2
ax-mp
⊢
Rel
⁡
B
→
Rel
⁡
A
∩
B