Metamath Proof Explorer


Theorem relmpoopab

Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypothesis relmpoopab.1 F = x A , y B z w | φ
Assertion relmpoopab Rel C F D

Proof

Step Hyp Ref Expression
1 relmpoopab.1 F = x A , y B z w | φ
2 relopabv Rel z w | φ
3 df-rel Rel z w | φ z w | φ V × V
4 2 3 mpbi z w | φ V × V
5 4 rgen2w x A y B z w | φ V × V
6 1 ovmptss x A y B z w | φ V × V C F D V × V
7 5 6 ax-mp C F D V × V
8 df-rel Rel C F D C F D V × V
9 7 8 mpbir Rel C F D