Metamath Proof Explorer


Theorem relmptopab

Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis relmptopab.1 F = x A y z | φ
Assertion relmptopab Rel F B

Proof

Step Hyp Ref Expression
1 relmptopab.1 F = x A y z | φ
2 1 fvmptss x A y z | φ V × V F B V × V
3 relopab Rel y z | φ
4 df-rel Rel y z | φ y z | φ V × V
5 3 4 mpbi y z | φ V × V
6 5 a1i x A y z | φ V × V
7 2 6 mprg F B V × V
8 df-rel Rel F B F B V × V
9 7 8 mpbir Rel F B