Metamath Proof Explorer


Theorem relog

Description: Real part of a logarithm. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion relog A A 0 log A = log A

Proof

Step Hyp Ref Expression
1 logcl A A 0 log A
2 1 recld A A 0 log A
3 relogef log A log e log A = log A
4 2 3 syl A A 0 log e log A = log A
5 absef log A e log A = e log A
6 1 5 syl A A 0 e log A = e log A
7 eflog A A 0 e log A = A
8 7 fveq2d A A 0 e log A = A
9 6 8 eqtr3d A A 0 e log A = A
10 9 fveq2d A A 0 log e log A = log A
11 4 10 eqtr3d A A 0 log A = log A