Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
relog
Next ⟩
relogiso
Metamath Proof Explorer
Ascii
Unicode
Theorem
relog
Description:
Real part of a logarithm.
(Contributed by
Mario Carneiro
, 15-Sep-2014)
Ref
Expression
Assertion
relog
⊢
A
∈
ℂ
∧
A
≠
0
→
ℜ
⁡
log
⁡
A
=
log
⁡
A
Proof
Step
Hyp
Ref
Expression
1
logcl
⊢
A
∈
ℂ
∧
A
≠
0
→
log
⁡
A
∈
ℂ
2
1
recld
⊢
A
∈
ℂ
∧
A
≠
0
→
ℜ
⁡
log
⁡
A
∈
ℝ
3
relogef
⊢
ℜ
⁡
log
⁡
A
∈
ℝ
→
log
⁡
e
ℜ
⁡
log
⁡
A
=
ℜ
⁡
log
⁡
A
4
2
3
syl
⊢
A
∈
ℂ
∧
A
≠
0
→
log
⁡
e
ℜ
⁡
log
⁡
A
=
ℜ
⁡
log
⁡
A
5
absef
⊢
log
⁡
A
∈
ℂ
→
e
log
⁡
A
=
e
ℜ
⁡
log
⁡
A
6
1
5
syl
⊢
A
∈
ℂ
∧
A
≠
0
→
e
log
⁡
A
=
e
ℜ
⁡
log
⁡
A
7
eflog
⊢
A
∈
ℂ
∧
A
≠
0
→
e
log
⁡
A
=
A
8
7
fveq2d
⊢
A
∈
ℂ
∧
A
≠
0
→
e
log
⁡
A
=
A
9
6
8
eqtr3d
⊢
A
∈
ℂ
∧
A
≠
0
→
e
ℜ
⁡
log
⁡
A
=
A
10
9
fveq2d
⊢
A
∈
ℂ
∧
A
≠
0
→
log
⁡
e
ℜ
⁡
log
⁡
A
=
log
⁡
A
11
4
10
eqtr3d
⊢
A
∈
ℂ
∧
A
≠
0
→
ℜ
⁡
log
⁡
A
=
log
⁡
A