Metamath Proof Explorer


Theorem relogbcl

Description: Closure of the general logarithm with a positive real base on positive reals. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion relogbcl B + X + B 1 log B X

Proof

Step Hyp Ref Expression
1 simp1 B + X + B 1 B +
2 1 rpcnne0d B + X + B 1 B B 0
3 simp3 B + X + B 1 B 1
4 df-3an B B 0 B 1 B B 0 B 1
5 2 3 4 sylanbrc B + X + B 1 B B 0 B 1
6 eldifpr B 0 1 B B 0 B 1
7 5 6 sylibr B + X + B 1 B 0 1
8 simp2 B + X + B 1 X +
9 8 rpcnne0d B + X + B 1 X X 0
10 eldifsn X 0 X X 0
11 9 10 sylibr B + X + B 1 X 0
12 logbval B 0 1 X 0 log B X = log X log B
13 7 11 12 syl2anc B + X + B 1 log B X = log X log B
14 relogcl X + log X
15 14 3ad2ant2 B + X + B 1 log X
16 relogcl B + log B
17 16 3ad2ant1 B + X + B 1 log B
18 logne0 B + B 1 log B 0
19 18 3adant2 B + X + B 1 log B 0
20 15 17 19 redivcld B + X + B 1 log X log B
21 13 20 eqeltrd B + X + B 1 log B X