Metamath Proof Explorer


Theorem relogbcxp

Description: Identity law for the general logarithm for real numbers. (Contributed by AV, 22-May-2020)

Ref Expression
Assertion relogbcxp B + 1 X log B B X = X

Proof

Step Hyp Ref Expression
1 eldifsn B + 1 B + B 1
2 rpcn B + B
3 2 adantr B + B 1 B
4 rpne0 B + B 0
5 4 adantr B + B 1 B 0
6 simpr B + B 1 B 1
7 eldifpr B 0 1 B B 0 B 1
8 3 5 6 7 syl3anbrc B + B 1 B 0 1
9 1 8 sylbi B + 1 B 0 1
10 eldifi B + 1 B +
11 10 2 syl B + 1 B
12 recn X X
13 cxpcl B X B X
14 11 12 13 syl2an B + 1 X B X
15 11 adantr B + 1 X B
16 1 5 sylbi B + 1 B 0
17 16 adantr B + 1 X B 0
18 12 adantl B + 1 X X
19 15 17 18 cxpne0d B + 1 X B X 0
20 eldifsn B X 0 B X B X 0
21 14 19 20 sylanbrc B + 1 X B X 0
22 logbval B 0 1 B X 0 log B B X = log B X log B
23 9 21 22 syl2an2r B + 1 X log B B X = log B X log B
24 logcxp B + X log B X = X log B
25 10 24 sylan B + 1 X log B X = X log B
26 25 oveq1d B + 1 X log B X log B = X log B log B
27 eldif B + 1 B + ¬ B 1
28 rpcnne0 B + B B 0
29 28 adantr B + ¬ B 1 B B 0
30 27 29 sylbi B + 1 B B 0
31 logcl B B 0 log B
32 30 31 syl B + 1 log B
33 32 adantr B + 1 X log B
34 logne0 B + B 1 log B 0
35 1 34 sylbi B + 1 log B 0
36 35 adantr B + 1 X log B 0
37 18 33 36 divcan4d B + 1 X X log B log B = X
38 23 26 37 3eqtrd B + 1 X log B B X = X