Metamath Proof Explorer


Theorem relogbdiv

Description: The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of Cohen4 p. 361. (Contributed by AV, 29-May-2020)

Ref Expression
Assertion relogbdiv B 0 1 A + C + log B A C = log B A log B C

Proof

Step Hyp Ref Expression
1 neg1rr 1
2 relogbmulexp B 0 1 A + C + 1 log B A C 1 = log B A + -1 log B C
3 1 2 mp3anr3 B 0 1 A + C + log B A C 1 = log B A + -1 log B C
4 rpcn A + A
5 4 adantr A + C + A
6 rpcn C + C
7 6 adantl A + C + C
8 rpne0 C + C 0
9 8 adantl A + C + C 0
10 5 7 9 divrecd A + C + A C = A 1 C
11 1cnd C + 1
12 6 8 11 cxpnegd C + C 1 = 1 C 1
13 6 cxp1d C + C 1 = C
14 13 oveq2d C + 1 C 1 = 1 C
15 12 14 eqtrd C + C 1 = 1 C
16 15 adantl A + C + C 1 = 1 C
17 16 oveq2d A + C + A C 1 = A 1 C
18 10 17 eqtr4d A + C + A C = A C 1
19 18 adantl B 0 1 A + C + A C = A C 1
20 19 oveq2d B 0 1 A + C + log B A C = log B A C 1
21 rpcndif0 C + C 0
22 21 adantl A + C + C 0
23 logbcl B 0 1 C 0 log B C
24 22 23 sylan2 B 0 1 A + C + log B C
25 mulm1 log B C -1 log B C = log B C
26 25 oveq2d log B C log B A + -1 log B C = log B A + log B C
27 24 26 syl B 0 1 A + C + log B A + -1 log B C = log B A + log B C
28 rpcndif0 A + A 0
29 28 adantr A + C + A 0
30 logbcl B 0 1 A 0 log B A
31 29 30 sylan2 B 0 1 A + C + log B A
32 31 24 negsubd B 0 1 A + C + log B A + log B C = log B A log B C
33 27 32 eqtr2d B 0 1 A + C + log B A log B C = log B A + -1 log B C
34 3 20 33 3eqtr4d B 0 1 A + C + log B A C = log B A log B C