Metamath Proof Explorer


Theorem relogbexp

Description: Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of Cohen4 p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by AV, 9-Jun-2020)

Ref Expression
Assertion relogbexp B + B 1 M log B B M = M

Proof

Step Hyp Ref Expression
1 rpcn B + B
2 1 adantr B + B 1 B
3 rpne0 B + B 0
4 3 adantr B + B 1 B 0
5 simpr B + B 1 B 1
6 2 4 5 3jca B + B 1 B B 0 B 1
7 eldifpr B 0 1 B B 0 B 1
8 6 7 sylibr B + B 1 B 0 1
9 relogbzexp B 0 1 B + M log B B M = M log B B
10 8 9 stoic4a B + B 1 M log B B M = M log B B
11 6 3adant3 B + B 1 M B B 0 B 1
12 logbid1 B B 0 B 1 log B B = 1
13 11 12 syl B + B 1 M log B B = 1
14 13 oveq2d B + B 1 M M log B B = M 1
15 zcn M M
16 15 3ad2ant3 B + B 1 M M
17 16 mulid1d B + B 1 M M 1 = M
18 10 14 17 3eqtrd B + B 1 M log B B M = M