Step |
Hyp |
Ref |
Expression |
1 |
|
relogmul |
|
2 |
1
|
adantl |
|
3 |
2
|
oveq1d |
|
4 |
|
relogcl |
|
5 |
4
|
recnd |
|
6 |
5
|
adantr |
|
7 |
|
relogcl |
|
8 |
7
|
recnd |
|
9 |
8
|
adantl |
|
10 |
|
eldifpr |
|
11 |
|
3simpa |
|
12 |
10 11
|
sylbi |
|
13 |
|
logcl |
|
14 |
12 13
|
syl |
|
15 |
|
logccne0 |
|
16 |
10 15
|
sylbi |
|
17 |
14 16
|
jca |
|
18 |
17
|
adantr |
|
19 |
|
divdir |
|
20 |
6 9 18 19
|
syl2an23an |
|
21 |
3 20
|
eqtrd |
|
22 |
|
rpcn |
|
23 |
|
rpcn |
|
24 |
|
mulcl |
|
25 |
22 23 24
|
syl2an |
|
26 |
22
|
adantr |
|
27 |
23
|
adantl |
|
28 |
|
rpne0 |
|
29 |
28
|
adantr |
|
30 |
|
rpne0 |
|
31 |
30
|
adantl |
|
32 |
26 27 29 31
|
mulne0d |
|
33 |
|
eldifsn |
|
34 |
25 32 33
|
sylanbrc |
|
35 |
|
logbval |
|
36 |
34 35
|
sylan2 |
|
37 |
|
rpcndif0 |
|
38 |
37
|
adantr |
|
39 |
|
logbval |
|
40 |
38 39
|
sylan2 |
|
41 |
|
rpcndif0 |
|
42 |
41
|
adantl |
|
43 |
|
logbval |
|
44 |
42 43
|
sylan2 |
|
45 |
40 44
|
oveq12d |
|
46 |
21 36 45
|
3eqtr4d |
|