Metamath Proof Explorer


Theorem relogbmulexp

Description: The logarithm of the product of a positive real and a positive real number to the power of a real number is the sum of the logarithm of the first real number and the scaled logarithm of the second real number. (Contributed by AV, 29-May-2020)

Ref Expression
Assertion relogbmulexp B 0 1 A + C + E log B A C E = log B A + E log B C

Proof

Step Hyp Ref Expression
1 simp1 A + C + E A +
2 rpcxpcl C + E C E +
3 2 3adant1 A + C + E C E +
4 1 3 jca A + C + E A + C E +
5 relogbmul B 0 1 A + C E + log B A C E = log B A + log B C E
6 4 5 sylan2 B 0 1 A + C + E log B A C E = log B A + log B C E
7 relogbreexp B 0 1 C + E log B C E = E log B C
8 7 3adant3r1 B 0 1 A + C + E log B C E = E log B C
9 8 oveq2d B 0 1 A + C + E log B A + log B C E = log B A + E log B C
10 6 9 eqtrd B 0 1 A + C + E log B A C E = log B A + E log B C