Metamath Proof Explorer


Theorem relogbval

Description: Value of the general logarithm with integer base. (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion relogbval B 2 X + log B X = log X log B

Proof

Step Hyp Ref Expression
1 zgt1rpn0n1 B 2 B + B 0 B 1
2 1 adantr B 2 X + B + B 0 B 1
3 2 simp1d B 2 X + B +
4 3 rpcnd B 2 X + B
5 2 simp2d B 2 X + B 0
6 2 simp3d B 2 X + B 1
7 eldifpr B 0 1 B B 0 B 1
8 4 5 6 7 syl3anbrc B 2 X + B 0 1
9 simpr B 2 X + X +
10 9 rpcnne0d B 2 X + X X 0
11 eldifsn X 0 X X 0
12 10 11 sylibr B 2 X + X 0
13 logbval B 0 1 X 0 log B X = log X log B
14 8 12 13 syl2anc B 2 X + log B X = log X log B