Metamath Proof Explorer


Theorem relogbzcl

Description: Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017) (Proof shortened by AV, 9-Jun-2020)

Ref Expression
Assertion relogbzcl B 2 X + log B X

Proof

Step Hyp Ref Expression
1 zgt1rpn0n1 B 2 B + B 0 B 1
2 relogbcl B + X + B 1 log B X
3 2 3com23 B + B 1 X + log B X
4 3 3expia B + B 1 X + log B X
5 4 3adant2 B + B 0 B 1 X + log B X
6 1 5 syl B 2 X + log B X
7 6 imp B 2 X + log B X