Metamath Proof Explorer


Theorem relogcl

Description: Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion relogcl A + log A

Proof

Step Hyp Ref Expression
1 fvres A + log + A = log A
2 relogf1o log + : + 1-1 onto
3 f1of log + : + 1-1 onto log + : +
4 2 3 ax-mp log + : +
5 4 ffvelrni A + log + A
6 1 5 eqeltrrd A + log A