Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
relogcld
Next ⟩
reeflogd
Metamath Proof Explorer
Ascii
Unicode
Theorem
relogcld
Description:
Closure of the natural logarithm function.
(Contributed by
Mario Carneiro
, 29-May-2016)
Ref
Expression
Hypothesis
relogcld.1
⊢
φ
→
A
∈
ℝ
+
Assertion
relogcld
⊢
φ
→
log
⁡
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
relogcld.1
⊢
φ
→
A
∈
ℝ
+
2
relogcl
⊢
A
∈
ℝ
+
→
log
⁡
A
∈
ℝ
3
1
2
syl
⊢
φ
→
log
⁡
A
∈
ℝ