Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
relogcn
Next ⟩
ellogdm
Metamath Proof Explorer
Ascii
Unicode
Theorem
relogcn
Description:
The real logarithm function is continuous.
(Contributed by
Mario Carneiro
, 17-Feb-2015)
Ref
Expression
Assertion
relogcn
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
cn
ℝ
Proof
Step
Hyp
Ref
Expression
1
relogf1o
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
1-1 onto
ℝ
2
f1of
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
1-1 onto
ℝ
→
log
↾
ℝ
+
:
ℝ
+
⟶
ℝ
3
1
2
ax-mp
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
ℝ
4
ax-resscn
⊢
ℝ
⊆
ℂ
5
fss
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
ℝ
∧
ℝ
⊆
ℂ
→
log
↾
ℝ
+
:
ℝ
+
⟶
ℂ
6
3
4
5
mp2an
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
ℂ
7
rpssre
⊢
ℝ
+
⊆
ℝ
8
ovex
⊢
1
x
∈
V
9
dvrelog
⊢
ℝ
D
log
↾
ℝ
+
=
x
∈
ℝ
+
⟼
1
x
10
8
9
dmmpti
⊢
dom
⁡
log
↾
ℝ
+
ℝ
′
=
ℝ
+
11
dvcn
⊢
ℝ
⊆
ℂ
∧
log
↾
ℝ
+
:
ℝ
+
⟶
ℂ
∧
ℝ
+
⊆
ℝ
∧
dom
⁡
log
↾
ℝ
+
ℝ
′
=
ℝ
+
→
log
↾
ℝ
+
:
ℝ
+
⟶
cn
ℂ
12
10
11
mpan2
⊢
ℝ
⊆
ℂ
∧
log
↾
ℝ
+
:
ℝ
+
⟶
ℂ
∧
ℝ
+
⊆
ℝ
→
log
↾
ℝ
+
:
ℝ
+
⟶
cn
ℂ
13
4
6
7
12
mp3an
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
cn
ℂ
14
cncffvrn
⊢
ℝ
⊆
ℂ
∧
log
↾
ℝ
+
:
ℝ
+
⟶
cn
ℂ
→
log
↾
ℝ
+
:
ℝ
+
⟶
cn
ℝ
↔
log
↾
ℝ
+
:
ℝ
+
⟶
ℝ
15
4
13
14
mp2an
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
cn
ℝ
↔
log
↾
ℝ
+
:
ℝ
+
⟶
ℝ
16
3
15
mpbir
⊢
log
↾
ℝ
+
:
ℝ
+
⟶
cn
ℝ