Metamath Proof Explorer


Theorem relogcn

Description: The real logarithm function is continuous. (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Assertion relogcn log + : + cn

Proof

Step Hyp Ref Expression
1 relogf1o log + : + 1-1 onto
2 f1of log + : + 1-1 onto log + : +
3 1 2 ax-mp log + : +
4 ax-resscn
5 fss log + : + log + : +
6 3 4 5 mp2an log + : +
7 rpssre +
8 ovex 1 x V
9 dvrelog D log + = x + 1 x
10 8 9 dmmpti dom log + = +
11 dvcn log + : + + dom log + = + log + : + cn
12 10 11 mpan2 log + : + + log + : + cn
13 4 6 7 12 mp3an log + : + cn
14 cncffvrn log + : + cn log + : + cn log + : +
15 4 13 14 mp2an log + : + cn log + : +
16 3 15 mpbir log + : + cn