Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
relogdiv
Metamath Proof Explorer
Description: The natural logarithm of the quotient of two positive real numbers is the
difference of natural logarithms. Exercise 72(a) and Property 3 of
Cohen p. 301, restricted to natural logarithms. (Contributed by Steve
Rodriguez , 25-Nov-2007)
Ref
Expression
Assertion
relogdiv
⊢ A ∈ ℝ + ∧ B ∈ ℝ + → log ⁡ A B = log ⁡ A − log ⁡ B
Proof
Step
Hyp
Ref
Expression
1
efsub
⊢ log ⁡ A ∈ ℂ ∧ log ⁡ B ∈ ℂ → e log ⁡ A − log ⁡ B = e log ⁡ A e log ⁡ B
2
resubcl
⊢ log ⁡ A ∈ ℝ ∧ log ⁡ B ∈ ℝ → log ⁡ A − log ⁡ B ∈ ℝ
3
1 2
relogoprlem
⊢ A ∈ ℝ + ∧ B ∈ ℝ + → log ⁡ A B = log ⁡ A − log ⁡ B