Metamath Proof Explorer


Theorem relogexp

Description: The natural logarithm of positive A raised to an integer power. Property 4 of Cohen p. 301-302, restricted to natural logarithms and integer powers N . (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion relogexp A + N log A N = N log A

Proof

Step Hyp Ref Expression
1 relogcl A + log A
2 1 recnd A + log A
3 efexp log A N e N log A = e log A N
4 2 3 sylan A + N e N log A = e log A N
5 reeflog A + e log A = A
6 5 oveq1d A + e log A N = A N
7 6 adantr A + N e log A N = A N
8 4 7 eqtrd A + N e N log A = A N
9 8 fveq2d A + N log e N log A = log A N
10 zre N N
11 remulcl N log A N log A
12 10 1 11 syl2anr A + N N log A
13 relogef N log A log e N log A = N log A
14 12 13 syl A + N log e N log A = N log A
15 9 14 eqtr3d A + N log A N = N log A