Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
relogmul
Metamath Proof Explorer
Description: The natural logarithm of the product of two positive real numbers is the
sum of natural logarithms. Property 2 of Cohen p. 301, restricted to
natural logarithms. (Contributed by Steve Rodriguez , 25-Nov-2007)
Ref
Expression
Assertion
relogmul
⊢ A ∈ ℝ + ∧ B ∈ ℝ + → log ⁡ A ⁢ B = log ⁡ A + log ⁡ B
Proof
Step
Hyp
Ref
Expression
1
efadd
⊢ log ⁡ A ∈ ℂ ∧ log ⁡ B ∈ ℂ → e log ⁡ A + log ⁡ B = e log ⁡ A ⁢ e log ⁡ B
2
readdcl
⊢ log ⁡ A ∈ ℝ ∧ log ⁡ B ∈ ℝ → log ⁡ A + log ⁡ B ∈ ℝ
3
1 2
relogoprlem
⊢ A ∈ ℝ + ∧ B ∈ ℝ + → log ⁡ A ⁢ B = log ⁡ A + log ⁡ B