Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
relogmuld
Metamath Proof Explorer
Description: The natural logarithm of the product of two positive real numbers is the
sum of natural logarithms. Property 2 of Cohen p. 301, restricted to
natural logarithms. (Contributed by Mario Carneiro , 29-May-2016)
Ref
Expression
Hypotheses
relogcld.1
⊢ φ → A ∈ ℝ +
relogmuld.2
⊢ φ → B ∈ ℝ +
Assertion
relogmuld
⊢ φ → log ⁡ A ⁢ B = log ⁡ A + log ⁡ B
Proof
Step
Hyp
Ref
Expression
1
relogcld.1
⊢ φ → A ∈ ℝ +
2
relogmuld.2
⊢ φ → B ∈ ℝ +
3
relogmul
⊢ A ∈ ℝ + ∧ B ∈ ℝ + → log ⁡ A ⁢ B = log ⁡ A + log ⁡ B
4
1 2 3
syl2anc
⊢ φ → log ⁡ A ⁢ B = log ⁡ A + log ⁡ B