Metamath Proof Explorer


Theorem relogoprlem

Description: Lemma for relogmul and relogdiv . Remark of Cohen p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Hypotheses relogoprlem.1 log A log B e log A F log B = e log A G e log B
relogoprlem.2 log A log B log A F log B
Assertion relogoprlem A + B + log A G B = log A F log B

Proof

Step Hyp Ref Expression
1 relogoprlem.1 log A log B e log A F log B = e log A G e log B
2 relogoprlem.2 log A log B log A F log B
3 reeflog A + e log A = A
4 reeflog B + e log B = B
5 3 4 oveqan12d A + B + e log A G e log B = A G B
6 5 fveq2d A + B + log e log A G e log B = log A G B
7 relogcl A + log A
8 relogcl B + log B
9 recn log A log A
10 recn log B log B
11 1 fveq2d log A log B log e log A F log B = log e log A G e log B
12 9 10 11 syl2an log A log B log e log A F log B = log e log A G e log B
13 relogef log A F log B log e log A F log B = log A F log B
14 2 13 syl log A log B log e log A F log B = log A F log B
15 12 14 eqtr3d log A log B log e log A G e log B = log A F log B
16 7 8 15 syl2an A + B + log e log A G e log B = log A F log B
17 6 16 eqtr3d A + B + log A G B = log A F log B