Metamath Proof Explorer


Theorem relogrn

Description: The range of the natural logarithm function includes the real numbers. (Contributed by Paul Chapman, 21-Apr-2008) (Proof shortened by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion relogrn A A ran log

Proof

Step Hyp Ref Expression
1 recn A A
2 pipos 0 < π
3 pire π
4 lt0neg2 π 0 < π π < 0
5 3 4 ax-mp 0 < π π < 0
6 2 5 mpbi π < 0
7 reim0 A A = 0
8 6 7 breqtrrid A π < A
9 0re 0
10 9 3 2 ltleii 0 π
11 7 10 eqbrtrdi A A π
12 ellogrn A ran log A π < A A π
13 1 8 11 12 syl3anbrc A A ran log