Metamath Proof Explorer


Theorem relopabVD

Description: Virtual deduction proof of relopab . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab is relopabVD without virtual deductions and was automatically derived from relopabVD .

1:: |- (. y = v ->. y = v ).
2:1: |- (. y = v ->. <. x ,. y >. = <. x ,. v >. ).
3:: |- (. y = v ,. x = u ->. x = u ).
4:3: |- (. y = v ,. x = u ->. <. x ,. v >. = <. u , v >. ).
5:2,4: |- (. y = v ,. x = u ->. <. x ,. y >. = <. u , v >. ).
6:5: |- (. y = v ,. x = u ->. ( z = <. x ,. y >. -> z = <. u , v >. ) ).
7:6: |- (. y = v ->. ( x = u -> ( z = <. x ,. y >. -> z = <. u , v >. ) ) ).
8:7: |- ( y = v -> ( x = u -> ( z = <. x ,. y >. -> z = <. u , v >. ) ) )
9:8: |- ( E. v y = v -> E. v ( x = u -> ( z = <. x , y >. -> z = <. u , v >. ) ) )
90:: |- ( v = y <-> y = v )
91:90: |- ( E. v v = y <-> E. v y = v )
92:: |- E. v v = y
10:91,92: |- E. v y = v
11:9,10: |- E. v ( x = u -> ( z = <. x ,. y >. -> z = <. u , v >. ) )
12:11: |- ( x = u -> E. v ( z = <. x ,. y >. -> z = <. u , v >. ) )
13:: |- ( E. v ( z = <. x ,. y >. -> z = <. u , v >. ) -> ( z = <. x , y >. -> E. v z = <. u , v >. ) )
14:12,13: |- ( x = u -> ( z = <. x ,. y >. -> E. v z = <. u , v >. ) )
15:14: |- ( E. u x = u -> E. u ( z = <. x ,. y >. -> E. v z = <. u , v >. ) )
150:: |- ( u = x <-> x = u )
151:150: |- ( E. u u = x <-> E. u x = u )
152:: |- E. u u = x
16:151,152: |- E. u x = u
17:15,16: |- E. u ( z = <. x ,. y >. -> E. v z = <. u , v >. )
18:17: |- ( z = <. x ,. y >. -> E. u E. v z = <. u , v >. )
19:18: |- ( E. y z = <. x ,. y >. -> E. y E. u E. v z = <. u , v >. )
20:: |- ( E. y E. u E. v z = <. u ,. v >. -> E. u E. v z = <. u , v >. )
21:19,20: |- ( E. y z = <. x ,. y >. -> E. u E. v z = <. u , v >. )
22:21: |- ( E. x E. y z = <. x ,. y >. -> E. x E. u E. v z = <. u , v >. )
23:: |- ( E. x E. u E. v z = <. u ,. v >. -> E. u E. v z = <. u , v >. )
24:22,23: |- ( E. x E. y z = <. x ,. y >. -> E. u E. v z = <. u , v >. )
25:24: |- { z | E. x E. y z = <. x ,. y >. } C_ { z | E. u E. v z = <. u , v >. }
26:: |- x e.V
27:: |- y e. V
28:26,27: |- ( x e.V /\ y e. V )
29:28: |- ( z = <. x ,. y >. <-> ( z = <. x ,. y >. /\ ( x e.V /\ y e. V ) ) )
30:29: |- ( E. y z = <. x ,. y >. <-> E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) )
31:30: |- ( E. x E. y z = <. x ,. y >. <-> E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) )
32:31: |- { z | E. x E. y z = <. x ,. y >. } = { z | E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) }
320:25,32: |- { z | E. x E. y ( z = <. x ,. y >. /\ ( x e.V /\ y e. V ) ) } C_ { z | E. u E. v z = <. u , v >. }
33:: |- u e.V
34:: |- v e. V
35:33,34: |- ( u e.V /\ v e. V )
36:35: |- ( z = <. u ,. v >. <-> ( z = <. u ,. v >. /\ ( u e.V /\ v e. V ) ) )
37:36: |- ( E. v z = <. u ,. v >. <-> E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) )
38:37: |- ( E. u E. v z = <. u ,. v >. <-> E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) )
39:38: |- { z | E. u E. v z = <. u ,. v >. } = { z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) }
40:320,39: |- { z | E. x E. y ( z = <. x ,. y >. /\ ( x e.V /\ y e. V ) ) } C_ { z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) }
41:: |- { <. x ,. y >. | ( x e.V /\ y e. V ) } = { z | E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) }
42:: |- { <. u ,. v >. | ( u e.V /\ v e. V ) } = { z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) }
43:40,41,42: |- { <. x ,. y >. | ( x e.V /\ y e. V ) } C_ { <. u , v >. | ( u e.V /\ v e. V ) }
44:: |- { <. u ,. v >. | ( u e.V /\ v e. V ) } = (V X. V )
45:43,44: |- { <. x ,. y >. | ( x e.V /\ y e. V ) } C_ (V X. V )
46:28: |- ( ph -> ( x e.V /\ y e. V ) )
47:46: |- { <. x ,. y >. | ph } C_ { <. x ,. y >. | ( x e.V /\ y e. V ) }
48:45,47: |- { <. x ,. y >. | ph } C_ (V X. V )
qed:48: |- Rel { <. x ,. y >. | ph }
(Contributed by Alan Sare, 9-Jul-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion relopabVD Rel x y | φ

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 pm3.2i x V y V
4 3 a1i φ x V y V
5 4 ssopab2i x y | φ x y | x V y V
6 3 biantru z = x y z = x y x V y V
7 6 exbii y z = x y y z = x y x V y V
8 7 exbii x y z = x y x y z = x y x V y V
9 8 abbii z | x y z = x y = z | x y z = x y x V y V
10 ax6ev u u = x
11 equcom u = x x = u
12 11 exbii u u = x u x = u
13 10 12 mpbi u x = u
14 ax6ev v v = y
15 equcom v = y y = v
16 15 exbii v v = y v y = v
17 14 16 mpbi v y = v
18 idn1 y = v y = v
19 opeq2 y = v x y = x v
20 18 19 e1a y = v x y = x v
21 idn2 y = v , x = u x = u
22 opeq1 x = u x v = u v
23 21 22 e2 y = v , x = u x v = u v
24 eqeq1 x y = x v x y = u v x v = u v
25 24 biimprd x y = x v x v = u v x y = u v
26 20 23 25 e12 y = v , x = u x y = u v
27 eqeq2 x y = u v z = x y z = u v
28 27 biimpd x y = u v z = x y z = u v
29 26 28 e2 y = v , x = u z = x y z = u v
30 29 in2 y = v x = u z = x y z = u v
31 30 in1 y = v x = u z = x y z = u v
32 31 eximi v y = v v x = u z = x y z = u v
33 17 32 ax-mp v x = u z = x y z = u v
34 33 19.37iv x = u v z = x y z = u v
35 19.37v v z = x y z = u v z = x y v z = u v
36 35 biimpi v z = x y z = u v z = x y v z = u v
37 34 36 syl x = u z = x y v z = u v
38 37 eximi u x = u u z = x y v z = u v
39 13 38 ax-mp u z = x y v z = u v
40 39 19.37iv z = x y u v z = u v
41 40 eximi y z = x y y u v z = u v
42 19.9v y u v z = u v u v z = u v
43 42 biimpi y u v z = u v u v z = u v
44 41 43 syl y z = x y u v z = u v
45 44 eximi x y z = x y x u v z = u v
46 19.9v x u v z = u v u v z = u v
47 46 biimpi x u v z = u v u v z = u v
48 45 47 syl x y z = x y u v z = u v
49 48 ss2abi z | x y z = x y z | u v z = u v
50 9 49 eqsstrri z | x y z = x y x V y V z | u v z = u v
51 vex u V
52 vex v V
53 51 52 pm3.2i u V v V
54 53 biantru z = u v z = u v u V v V
55 54 exbii v z = u v v z = u v u V v V
56 55 exbii u v z = u v u v z = u v u V v V
57 56 abbii z | u v z = u v = z | u v z = u v u V v V
58 50 57 sseqtri z | x y z = x y x V y V z | u v z = u v u V v V
59 df-opab x y | x V y V = z | x y z = x y x V y V
60 df-opab u v | u V v V = z | u v z = u v u V v V
61 58 59 60 3sstr4i x y | x V y V u v | u V v V
62 df-xp V × V = u v | u V v V
63 62 eqcomi u v | u V v V = V × V
64 61 63 sseqtri x y | x V y V V × V
65 5 64 sstri x y | φ V × V
66 df-rel Rel x y | φ x y | φ V × V
67 66 biimpri x y | φ V × V Rel x y | φ
68 65 67 e0a Rel x y | φ