1:: | |- (. y = v ->. y = v ).
|
2:1: | |- (. y = v ->. <. x ,. y >. = <. x ,. v
>. ).
|
3:: | |- (. y = v ,. x = u ->. x = u ).
|
4:3: | |- (. y = v ,. x = u ->. <. x ,. v >. = <.
u , v >. ).
|
5:2,4: | |- (. y = v ,. x = u ->. <. x ,. y >. = <.
u , v >. ).
|
6:5: | |- (. y = v ,. x = u ->. ( z = <. x ,. y
>. -> z = <. u , v >. ) ).
|
7:6: | |- (. y = v ->. ( x = u -> ( z = <. x ,.
y >. -> z = <. u , v >. ) ) ).
|
8:7: | |- ( y = v -> ( x = u -> ( z = <. x ,. y
>. -> z = <. u , v >. ) ) )
|
9:8: | |- ( E. v y = v -> E. v ( x = u -> ( z
= <. x , y >. -> z = <. u , v >. ) ) )
|
90:: | |- ( v = y <-> y = v )
|
91:90: | |- ( E. v v = y <-> E. v y = v )
|
92:: | |- E. v v = y
|
10:91,92: | |- E. v y = v
|
11:9,10: | |- E. v ( x = u -> ( z = <. x ,. y >. ->
z = <. u , v >. ) )
|
12:11: | |- ( x = u -> E. v ( z = <. x ,. y >. ->
z = <. u , v >. ) )
|
13:: | |- ( E. v ( z = <. x ,. y >. -> z = <. u
, v >. ) -> ( z = <. x , y >. -> E. v z = <. u , v >. ) )
|
14:12,13: | |- ( x = u -> ( z = <. x ,. y >. -> E. v
z = <. u , v >. ) )
|
15:14: | |- ( E. u x = u -> E. u ( z = <. x ,. y
>. -> E. v z = <. u , v >. ) )
|
150:: | |- ( u = x <-> x = u )
|
151:150: | |- ( E. u u = x <-> E. u x = u )
|
152:: | |- E. u u = x
|
16:151,152: | |- E. u x = u
|
17:15,16: | |- E. u ( z = <. x ,. y >. -> E. v z = <.
u , v >. )
|
18:17: | |- ( z = <. x ,. y >. -> E. u E. v z = <.
u , v >. )
|
19:18: | |- ( E. y z = <. x ,. y >. -> E. y E. u
E. v z = <. u , v >. )
|
20:: | |- ( E. y E. u E. v z = <. u ,. v >. ->
E. u E. v z = <. u , v >. )
|
21:19,20: | |- ( E. y z = <. x ,. y >. -> E. u E. v z
= <. u , v >. )
|
22:21: | |- ( E. x E. y z = <. x ,. y >. -> E. x
E. u E. v z = <. u , v >. )
|
23:: | |- ( E. x E. u E. v z = <. u ,. v >. ->
E. u E. v z = <. u , v >. )
|
24:22,23: | |- ( E. x E. y z = <. x ,. y >. -> E. u
E. v z = <. u , v >. )
|
25:24: | |- { z | E. x E. y z = <. x ,. y >. } C_
{ z | E. u E. v z = <. u , v >. }
|
26:: | |- x e.V
|
27:: | |- y e. V
|
28:26,27: | |- ( x e.V /\ y e. V )
|
29:28: | |- ( z = <. x ,. y >. <-> ( z = <. x ,. y
>. /\ ( x e.V /\ y e. V ) ) )
|
30:29: | |- ( E. y z = <. x ,. y >. <-> E. y ( z =
<. x , y >. /\ ( x e.V /\ y e. V ) ) )
|
31:30: | |- ( E. x E. y z = <. x ,. y >. <-> E. x
E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) )
|
32:31: | |- { z | E. x E. y z = <. x ,. y >. } = {
z | E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) }
|
320:25,32: | |- { z | E. x E. y ( z = <. x ,. y >. /\
( x e.V /\ y e. V ) ) } C_ { z | E. u E. v z = <. u , v >. }
|
33:: | |- u e.V
|
34:: | |- v e. V
|
35:33,34: | |- ( u e.V /\ v e. V )
|
36:35: | |- ( z = <. u ,. v >. <-> ( z = <. u ,. v
>. /\ ( u e.V /\ v e. V ) ) )
|
37:36: | |- ( E. v z = <. u ,. v >. <-> E. v ( z =
<. u , v >. /\ ( u e.V /\ v e. V ) ) )
|
38:37: | |- ( E. u E. v z = <. u ,. v >. <-> E. u
E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) )
|
39:38: | |- { z | E. u E. v z = <. u ,. v >. } = {
z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) }
|
40:320,39: | |- { z | E. x E. y ( z = <. x ,. y >. /\
( x e.V /\ y e. V ) ) } C_ { z | E. u E. v ( z = <. u , v >. /\
( u e.V /\ v e. V ) ) }
|
41:: | |- { <. x ,. y >. | ( x e.V /\ y e. V
) } = { z | E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) )
}
|
42:: | |- { <. u ,. v >. | ( u e.V /\ v e. V
) } = { z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) )
}
|
43:40,41,42: | |- { <. x ,. y >. | ( x e.V /\ y e. V
) } C_ { <. u , v >. | ( u e.V /\ v e. V ) }
|
44:: | |- { <. u ,. v >. | ( u e.V /\ v e. V
) } = (V X. V )
|
45:43,44: | |- { <. x ,. y >. | ( x e.V /\ y e. V
) } C_ (V X. V )
|
46:28: | |- ( ph -> ( x e.V /\ y e. V ) )
|
47:46: | |- { <. x ,. y >. | ph } C_ { <. x ,. y >.
| ( x e.V /\ y e. V ) }
|
48:45,47: | |- { <. x ,. y >. | ph } C_ (V X. V )
|
qed:48: | |- Rel { <. x ,. y >. | ph }
|