Metamath Proof Explorer


Theorem relopabiALT

Description: Alternate proof of relopabi (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis relopabi.1 A = x y | φ
Assertion relopabiALT Rel A

Proof

Step Hyp Ref Expression
1 relopabi.1 A = x y | φ
2 df-opab x y | φ = z | x y z = x y φ
3 1 2 eqtri A = z | x y z = x y φ
4 vex x V
5 vex y V
6 4 5 opelvv x y V × V
7 eleq1 z = x y z V × V x y V × V
8 6 7 mpbiri z = x y z V × V
9 8 adantr z = x y φ z V × V
10 9 exlimivv x y z = x y φ z V × V
11 10 abssi z | x y z = x y φ V × V
12 3 11 eqsstri A V × V
13 df-rel Rel A A V × V
14 12 13 mpbir Rel A