Metamath Proof Explorer


Theorem relopabiv

Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 and ax-12 , see relopabi . (Contributed by BJ, 22-Jul-2023)

Ref Expression
Hypothesis relopabiv.1 A = x y | φ
Assertion relopabiv Rel A

Proof

Step Hyp Ref Expression
1 relopabiv.1 A = x y | φ
2 vex x V
3 vex y V
4 2 3 pm3.2i x V y V
5 4 a1i φ x V y V
6 5 ssopab2i x y | φ x y | x V y V
7 df-xp V × V = x y | x V y V
8 6 1 7 3sstr4i A V × V
9 df-rel Rel A A V × V
10 8 9 mpbir Rel A