Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finitely supported functions
relprcnfsupp
Next ⟩
isfsupp
Metamath Proof Explorer
Ascii
Unicode
Theorem
relprcnfsupp
Description:
A proper class is never finitely supported.
(Contributed by
AV
, 7-Jun-2019)
Ref
Expression
Assertion
relprcnfsupp
⊢
¬
A
∈
V
→
¬
finSupp
Z
⁡
A
Proof
Step
Hyp
Ref
Expression
1
relfsupp
⊢
Rel
⁡
finSupp
2
1
brrelex1i
⊢
finSupp
Z
⁡
A
→
A
∈
V
3
2
con3i
⊢
¬
A
∈
V
→
¬
finSupp
Z
⁡
A