Metamath Proof Explorer


Theorem relprcnfsupp

Description: A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019)

Ref Expression
Assertion relprcnfsupp ¬ A V ¬ finSupp Z A

Proof

Step Hyp Ref Expression
1 relfsupp Rel finSupp
2 1 brrelex1i finSupp Z A A V
3 2 con3i ¬ A V ¬ finSupp Z A