Metamath Proof Explorer


Theorem relrelss

Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008)

Ref Expression
Assertion relrelss Rel A Rel dom A A V × V × V

Proof

Step Hyp Ref Expression
1 df-rel Rel dom A dom A V × V
2 1 anbi2i Rel A Rel dom A Rel A dom A V × V
3 relssdmrn Rel A A dom A × ran A
4 ssv ran A V
5 xpss12 dom A V × V ran A V dom A × ran A V × V × V
6 4 5 mpan2 dom A V × V dom A × ran A V × V × V
7 3 6 sylan9ss Rel A dom A V × V A V × V × V
8 xpss V × V × V V × V
9 sstr A V × V × V V × V × V V × V A V × V
10 8 9 mpan2 A V × V × V A V × V
11 df-rel Rel A A V × V
12 10 11 sylibr A V × V × V Rel A
13 dmss A V × V × V dom A dom V × V × V
14 vn0 V
15 dmxp V dom V × V × V = V × V
16 14 15 ax-mp dom V × V × V = V × V
17 13 16 sseqtrdi A V × V × V dom A V × V
18 12 17 jca A V × V × V Rel A dom A V × V
19 7 18 impbii Rel A dom A V × V A V × V × V
20 2 19 bitri Rel A Rel dom A A V × V × V