Metamath Proof Explorer


Theorem relres

Description: A restriction is a relation. Exercise 12 of TakeutiZaring p. 25. (Contributed by NM, 2-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion relres Rel A B

Proof

Step Hyp Ref Expression
1 df-res A B = A B × V
2 inss2 A B × V B × V
3 1 2 eqsstri A B B × V
4 relxp Rel B × V
5 relss A B B × V Rel B × V Rel A B
6 3 4 5 mp2 Rel A B