Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
relresfld
Next ⟩
relcoi2
Metamath Proof Explorer
Ascii
Unicode
Theorem
relresfld
Description:
Restriction of a relation to its field.
(Contributed by
FL
, 15-Apr-2012)
Ref
Expression
Assertion
relresfld
⊢
Rel
⁡
R
→
R
↾
⋃
⋃
R
=
R
Proof
Step
Hyp
Ref
Expression
1
relfld
⊢
Rel
⁡
R
→
⋃
⋃
R
=
dom
⁡
R
∪
ran
⁡
R
2
1
reseq2d
⊢
Rel
⁡
R
→
R
↾
⋃
⋃
R
=
R
↾
dom
⁡
R
∪
ran
⁡
R
3
resundi
⊢
R
↾
dom
⁡
R
∪
ran
⁡
R
=
R
↾
dom
⁡
R
∪
R
↾
ran
⁡
R
4
eqtr
⊢
R
↾
⋃
⋃
R
=
R
↾
dom
⁡
R
∪
ran
⁡
R
∧
R
↾
dom
⁡
R
∪
ran
⁡
R
=
R
↾
dom
⁡
R
∪
R
↾
ran
⁡
R
→
R
↾
⋃
⋃
R
=
R
↾
dom
⁡
R
∪
R
↾
ran
⁡
R
5
resss
⊢
R
↾
ran
⁡
R
⊆
R
6
resdm
⊢
Rel
⁡
R
→
R
↾
dom
⁡
R
=
R
7
ssequn2
⊢
R
↾
ran
⁡
R
⊆
R
↔
R
∪
R
↾
ran
⁡
R
=
R
8
uneq1
⊢
R
↾
dom
⁡
R
=
R
→
R
↾
dom
⁡
R
∪
R
↾
ran
⁡
R
=
R
∪
R
↾
ran
⁡
R
9
8
eqeq2d
⊢
R
↾
dom
⁡
R
=
R
→
R
↾
⋃
⋃
R
=
R
↾
dom
⁡
R
∪
R
↾
ran
⁡
R
↔
R
↾
⋃
⋃
R
=
R
∪
R
↾
ran
⁡
R
10
eqtr
⊢
R
↾
⋃
⋃
R
=
R
∪
R
↾
ran
⁡
R
∧
R
∪
R
↾
ran
⁡
R
=
R
→
R
↾
⋃
⋃
R
=
R
11
10
ex
⊢
R
↾
⋃
⋃
R
=
R
∪
R
↾
ran
⁡
R
→
R
∪
R
↾
ran
⁡
R
=
R
→
R
↾
⋃
⋃
R
=
R
12
9
11
syl6bi
⊢
R
↾
dom
⁡
R
=
R
→
R
↾
⋃
⋃
R
=
R
↾
dom
⁡
R
∪
R
↾
ran
⁡
R
→
R
∪
R
↾
ran
⁡
R
=
R
→
R
↾
⋃
⋃
R
=
R
13
12
com3r
⊢
R
∪
R
↾
ran
⁡
R
=
R
→
R
↾
dom
⁡
R
=
R
→
R
↾
⋃
⋃
R
=
R
↾
dom
⁡
R
∪
R
↾
ran
⁡
R
→
R
↾
⋃
⋃
R
=
R
14
7
13
sylbi
⊢
R
↾
ran
⁡
R
⊆
R
→
R
↾
dom
⁡
R
=
R
→
R
↾
⋃
⋃
R
=
R
↾
dom
⁡
R
∪
R
↾
ran
⁡
R
→
R
↾
⋃
⋃
R
=
R
15
5
6
14
mpsyl
⊢
Rel
⁡
R
→
R
↾
⋃
⋃
R
=
R
↾
dom
⁡
R
∪
R
↾
ran
⁡
R
→
R
↾
⋃
⋃
R
=
R
16
4
15
syl5com
⊢
R
↾
⋃
⋃
R
=
R
↾
dom
⁡
R
∪
ran
⁡
R
∧
R
↾
dom
⁡
R
∪
ran
⁡
R
=
R
↾
dom
⁡
R
∪
R
↾
ran
⁡
R
→
Rel
⁡
R
→
R
↾
⋃
⋃
R
=
R
17
2
3
16
sylancl
⊢
Rel
⁡
R
→
Rel
⁡
R
→
R
↾
⋃
⋃
R
=
R
18
17
pm2.43i
⊢
Rel
⁡
R
→
R
↾
⋃
⋃
R
=
R