Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
relsdom
Next ⟩
encv
Metamath Proof Explorer
Ascii
Unicode
Theorem
relsdom
Description:
Strict dominance is a relation.
(Contributed by
NM
, 31-Mar-1998)
Ref
Expression
Assertion
relsdom
⊢
Rel
⁡
≺
Proof
Step
Hyp
Ref
Expression
1
reldom
⊢
Rel
⁡
≼
2
reldif
⊢
Rel
⁡
≼
→
Rel
⁡
≼
∖
≈
3
df-sdom
⊢
≺
=
≼
∖
≈
4
3
releqi
⊢
Rel
⁡
≺
↔
Rel
⁡
≼
∖
≈
5
2
4
sylibr
⊢
Rel
⁡
≼
→
Rel
⁡
≺
6
1
5
ax-mp
⊢
Rel
⁡
≺