Metamath Proof Explorer


Theorem relsdom

Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998)

Ref Expression
Assertion relsdom Rel

Proof

Step Hyp Ref Expression
1 reldom Rel
2 reldif Rel Rel
3 df-sdom =
4 3 releqi Rel Rel
5 2 4 sylibr Rel Rel
6 1 5 ax-mp Rel