Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
relsn
Next ⟩
relsnop
Metamath Proof Explorer
Ascii
Unicode
Theorem
relsn
Description:
A singleton is a relation iff it is an ordered pair.
(Contributed by
NM
, 24-Sep-2013)
Ref
Expression
Hypothesis
relsn.1
⊢
A
∈
V
Assertion
relsn
⊢
Rel
⁡
A
↔
A
∈
V
×
V
Proof
Step
Hyp
Ref
Expression
1
relsn.1
⊢
A
∈
V
2
relsng
⊢
A
∈
V
→
Rel
⁡
A
↔
A
∈
V
×
V
3
1
2
ax-mp
⊢
Rel
⁡
A
↔
A
∈
V
×
V