Metamath Proof Explorer


Theorem relsnb

Description: An at-most-singleton is a relation iff it is empty (because it is a "singleton on a proper class") or it is a singleton of an ordered pair. (Contributed by BJ, 26-Feb-2023)

Ref Expression
Assertion relsnb Rel A ¬ A V A V × V

Proof

Step Hyp Ref Expression
1 relsng A V Rel A A V × V
2 1 biimpcd Rel A A V A V × V
3 imor A V A V × V ¬ A V A V × V
4 2 3 sylib Rel A ¬ A V A V × V
5 snprc ¬ A V A =
6 rel0 Rel
7 releq A = Rel A Rel
8 6 7 mpbiri A = Rel A
9 5 8 sylbi ¬ A V Rel A
10 relsng A V × V Rel A A V × V
11 10 ibir A V × V Rel A
12 9 11 jaoi ¬ A V A V × V Rel A
13 4 12 impbii Rel A ¬ A V A V × V