Metamath Proof Explorer


Theorem relsnopg

Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998) (Revised by BJ, 12-Feb-2022)

Ref Expression
Assertion relsnopg A V B W Rel A B

Proof

Step Hyp Ref Expression
1 opelvvg A V B W A B V × V
2 opex A B V
3 relsng A B V Rel A B A B V × V
4 2 3 mp1i A V B W Rel A B A B V × V
5 1 4 mpbird A V B W Rel A B